3.980 \(\int \frac{1-x}{x \sqrt{1+3 x+x^2}} \, dx\)

Optimal. Leaf size=19 \[ -2 \tanh ^{-1}\left (\frac{x+1}{\sqrt{x^2+3 x+1}}\right ) \]

[Out]

-2*ArcTanh[(1 + x)/Sqrt[1 + 3*x + x^2]]

________________________________________________________________________________________

Rubi [A]  time = 0.0146195, antiderivative size = 19, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {838, 206} \[ -2 \tanh ^{-1}\left (\frac{x+1}{\sqrt{x^2+3 x+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 - x)/(x*Sqrt[1 + 3*x + x^2]),x]

[Out]

-2*ArcTanh[(1 + x)/Sqrt[1 + 3*x + x^2]]

Rule 838

Int[((f_) + (g_.)*(x_))/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4*f
*(a - d))/(b*d - a*e), Subst[Int[1/(4*(a - d) - x^2), x], x, (2*(a - d) + (b - e)*x)/Sqrt[a + b*x + c*x^2]], x
] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[4*c*(a - d) - (b - e)^2, 0] && EqQ[e*f*(b - e) - 2*g*(b*d - a*e),
0] && NeQ[b*d - a*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1-x}{x \sqrt{1+3 x+x^2}} \, dx &=-\left (4 \operatorname{Subst}\left (\int \frac{1}{4-x^2} \, dx,x,\frac{2+2 x}{\sqrt{1+3 x+x^2}}\right )\right )\\ &=-2 \tanh ^{-1}\left (\frac{1+x}{\sqrt{1+3 x+x^2}}\right )\\ \end{align*}

Mathematica [B]  time = 0.0063617, size = 49, normalized size = 2.58 \[ -\tanh ^{-1}\left (\frac{2 x+3}{2 \sqrt{x^2+3 x+1}}\right )-\tanh ^{-1}\left (\frac{3 x+2}{2 \sqrt{x^2+3 x+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - x)/(x*Sqrt[1 + 3*x + x^2]),x]

[Out]

-ArcTanh[(3 + 2*x)/(2*Sqrt[1 + 3*x + x^2])] - ArcTanh[(2 + 3*x)/(2*Sqrt[1 + 3*x + x^2])]

________________________________________________________________________________________

Maple [B]  time = 0.008, size = 38, normalized size = 2. \begin{align*} -\ln \left ({\frac{3}{2}}+x+\sqrt{{x}^{2}+3\,x+1} \right ) -{\it Artanh} \left ({\frac{2+3\,x}{2}{\frac{1}{\sqrt{{x}^{2}+3\,x+1}}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-x)/x/(x^2+3*x+1)^(1/2),x)

[Out]

-ln(3/2+x+(x^2+3*x+1)^(1/2))-arctanh(1/2*(2+3*x)/(x^2+3*x+1)^(1/2))

________________________________________________________________________________________

Maxima [B]  time = 0.97464, size = 65, normalized size = 3.42 \begin{align*} -\log \left (2 \, x + 2 \, \sqrt{x^{2} + 3 \, x + 1} + 3\right ) - \log \left (\frac{2 \, \sqrt{x^{2} + 3 \, x + 1}}{{\left | x \right |}} + \frac{2}{{\left | x \right |}} + 3\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)/x/(x^2+3*x+1)^(1/2),x, algorithm="maxima")

[Out]

-log(2*x + 2*sqrt(x^2 + 3*x + 1) + 3) - log(2*sqrt(x^2 + 3*x + 1)/abs(x) + 2/abs(x) + 3)

________________________________________________________________________________________

Fricas [B]  time = 1.21484, size = 123, normalized size = 6.47 \begin{align*} \log \left (4 \, x^{2} - \sqrt{x^{2} + 3 \, x + 1}{\left (4 \, x + 5\right )} + 11 \, x + 5\right ) - \log \left (-x + \sqrt{x^{2} + 3 \, x + 1} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)/x/(x^2+3*x+1)^(1/2),x, algorithm="fricas")

[Out]

log(4*x^2 - sqrt(x^2 + 3*x + 1)*(4*x + 5) + 11*x + 5) - log(-x + sqrt(x^2 + 3*x + 1) + 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - \frac{1}{x \sqrt{x^{2} + 3 x + 1}}\, dx - \int \frac{1}{\sqrt{x^{2} + 3 x + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)/x/(x**2+3*x+1)**(1/2),x)

[Out]

-Integral(-1/(x*sqrt(x**2 + 3*x + 1)), x) - Integral(1/sqrt(x**2 + 3*x + 1), x)

________________________________________________________________________________________

Giac [B]  time = 1.19265, size = 76, normalized size = 4. \begin{align*} -\log \left ({\left | -x + \sqrt{x^{2} + 3 \, x + 1} + 1 \right |}\right ) + \log \left ({\left | -x + \sqrt{x^{2} + 3 \, x + 1} - 1 \right |}\right ) + \log \left ({\left | -2 \, x + 2 \, \sqrt{x^{2} + 3 \, x + 1} - 3 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)/x/(x^2+3*x+1)^(1/2),x, algorithm="giac")

[Out]

-log(abs(-x + sqrt(x^2 + 3*x + 1) + 1)) + log(abs(-x + sqrt(x^2 + 3*x + 1) - 1)) + log(abs(-2*x + 2*sqrt(x^2 +
 3*x + 1) - 3))